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A surface gravity wave obliquely incident on a sloping beach is broken near the 
beach and has a smooth surface further out. Viewed in the frame of reference of 
the transition from the smooth to the broken part, the flow is steady, and the 
wave is oblique to the free stream. By placing a suitably shaped obstacle in a 
flume operated at high Froude number, such a wave can be generated. Experi- 
ments in which a wave of 18 cm height was generated are described and the wave 
shape and some of its characteristics presented. In  particular, the dividing 
stream surface separating that part of the flow which curls over into the break 
from the part that flows smoothly over the obstacle is discussed. 

Model surfboards can ride this wave unsupported, provided the correctly 
scaled weight loads them at the right centre-of-mass position. This makes it 
possible to determine the forces on the board without a balance. A comparison 
of the measured forces with estimates, particularly of the drag, indicate that 
viscous and surface-tension phenomena introduce only small scale effects in the 
Froude number modelling. While the results are not sufficiently accurate to 
draw definite conclusionsabout theeffectsof surfboardshape, they indicate clearly 
that surfboard flows may be modelled with quantitative success in the laboratory. 

1. Introduction 
When a water wave is obliquely incident on a sloping beach, the portion of it 

closest to the beach is broken, while that furthest from the beach has a smooth 
surface. The transition from the smooth to the broken part of the wave occurs 
continuously over a region spanning a few wave heights. The wave face reaches 
its maximum slope in this transition region, which is therefore the part of the 
wave most suitable for the purposes of the surfboard rider, who uses the wave 
face much like a skier uses a mountain. Because he continually moves with the 
point at  which the wave is just breaking, that is with the point at which the water 
depth reaches a certain value, the path of the surfboard rider is parallel to the 
bottom contour, and his average velocity is that of the intersection of the wave 
with the bottom contour, so that he moves faster than the propagation speed of 
the wave even if his velocity is constant. 

Although some excellent films have been made of surfboard riders on moving 
waves, the detailed information obtainable from these is very limited and, because 
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of the obvious dificulty of conditions at a beach, very expensive. For the case 
of a surfboard rider with constant velocity, however, the problem can be trans- 
formed into a steady one by observing from the frame of reference of the rider, 
that is, of the region of transition from smooth to broken wave. Hence, if a 
stationary wave with the necessary characteristics can be generated in the 
laboratory, it  should be possible to study the steady motion of a surfboard in its 
own frame of reference. 

It is clear that the experiment has to be made in a stream of water with a 
velocity of equivalent magnitude and opposite direction to that of the surfboard 
in the real situation, in which the water at a large distance from the board is 
stationary. Such streams of water are available in laboratories in the form of 
water channels or flumes, the typical size of which is usually 1 m across the flow 
direction. Since in the real situation the transition from smooth to broken wave 
occurs typically over a distance of lOm, the laboratory wave must be scaled 
down. It must also be an oblique wave, that is, its direction of propagation 
relative to the free stream must have a component across the flume and the wave 
must be breaking at its downstream end while being smooth at its upstream end. 

Both the problem of the wave and that of a planing board have been treated 
in simple cases before. Thus, experiments and numerical calculations of waves 
normally incident on a sloping beach have been made (see Stoker 1957, 0 10.10). 
Also Wagner (1932) calculated the flow under a planing hull by the methods of 
incompressible flow wing theory. Others after him have extended and refined 
his approach (see, for example, Sedov 1965, and, for further references, Wehausen 
& Laitone 1960). However, the situation with both the wave and the surfboard 
is, in the present problem, so far from the simplifying idealizations necessary 
to make the problems accessible to theory that this previous work is only useful 
in a qualitative way. The approach in the present work is therefore essentially 
empirical. 

The first aim of the present work was to generate a stationary scale model of 
the transition from the smooth to broken wave obliquely across a flume in such 
a way that the surface shape of the wave is as nearly geometrically similar to an 
ideal wave in the real s u m  situation as possible. The second aim was to build 
models of surfboards to the same scale, suitably weighted to produce a situation 
dynamically similar to the constant-velocity surfboard, and to study the 
variation of the steady-state characteristics and the stability of boards with 
simple shape variations. In  effect, the feasibility of testing scale models of 
surf boards in a flume and the inevitable scale effects associated with the modelling 
were to be examined. 

2. Theflume 
The flume in which the present experiments were made is 0.91 m wide, and 

9.1 m long. The maximum volume flow rate is 0.17m3s-’. The water is pumped 
from an underground tank of 50m3 capacity through a pipe of 30 cm diameter 
into a header tank of 9 m3 capacity from which it flows through a bank of closely 
packed polythene tubes (3.8 cm diameter, 45 cm long) into the flume. The cross- 



A stationary oblique breaking wave 46 1 

sectional area of the tube bank is approximately 1 m2. I n  the present experiments 
the tube bank is followed by a smooth, broad-crested weir made of aluminium 
sheet, formed over a wooden. support structure. On the downstream side the 
weir blends smoothly (with continuous slope) into the wooden floor of the flow 
which is also raised above the permanent floor of the flume by a wooden structure. 
The side walls of the flume are made of glass between aluminium frames such 
that the inside is flush along the full length. The top is open between the frames. 
The slope of the flume is continuously adjustable from 0 to 2.5' from the hori- 
zontal, by a hydraulically operated ramp device. 

3. The wave 
3.1. Shape parameters 

As a smooth ocean wave travels shoreward at normal incidence, the depth of the 
water decreases. The constraint imposed on the periodic motion of the particles 
in the wave by the rising ocean floor causes the wave face to steepen to form a 
cusped crest which eventually breaks into an entrailed plume on the wave face. 
The shape of the wave at this point is of interest and depends mainly on the 
slope of the beach. If the depth decreases sufficiently rapidly the top of the wave 
plunges forward bodily without forming a plume and strikes the surface some- 
where on the wave face (see Stoker 1957, Q 10.10). A suitable measure of the wave 
shape is the ratio S of the throw b of the curl to the wave height h, as defined in 
figure 1. Large values of S are preferred by surfers because such waves have steep 
faces and hence can produce higher surfboard speeds, as well as supplying the 
excitement and danger associated with surfhg inside the tube. 

If the wave is obliquely incident on the beach, a second parameter necessary 
to describe the wave shape is the angle y made by the wave front and the beach 
contours. While a wave which is normally incident on the beach is plane but 
unsteady, the obliquely incident wave is three-dimensional and steady, if 
viewed from co-ordinates fixed in that part of the wave which is just breaking. 
The speed of this transition region, or the break speed vb, is directed parallel to 
the beach contour and is related to the phase speed of the wave v, by 

v b  = .,/sin y. (1) 

3.2. The obstacle 

The three-dimensional steady wave obliquely incident on the beach is analogous 
to the two-dimensional unsteady wave with normal incidence, the co-ordinate 
along the wave front in the former case corresponding to time in the latter. Thus, 
the dotted line in figure 1 representing the wave shape at some time before 
breaking would be observed in the oblique case on that part of the wave which 
is further from the beach than the break. 

In order to simulate the oblique wave in the flume it is necessary to accelerate 
the water to a speed corresponding to the value of vb associated with the wave. 
Since this is directly related to the wave speed v, the free-stream speed is governed 
by the size of the wave. This in turn is limited by the size of the facility, and in 
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FIGURE 1. Two-dimensional unsteady breaking wave. 
_ _ _ _  , surface at earlier time. 

the present experiment the wave height h is restricted to approximately 20 em. 
With an angle y of around 45", the free-stream water speed must therefore be 
approximately 2 m s-l for a wave of this size to be stationary. The water depth 
in the free stream is less than 20cm, and the free stream is in a condition of 
rapid (or supercritical) flow. The acceleration from tranquil to rapid flow is 
achieved by the reduction in water height through the broad-crested weir, which 
is analogous to a Lava1 nozzle in gas flow. The speed is maintained constant after 
the accelerating weir and subsequent steep portion of the floor, by a constant 
slope of the floor (1" 20') which is chosen to compensate approximately for the 
losses due to skin friction a t  the floor and walls. 

In  the case of the obliquely incident ocean wave, energy is continually fed 
into the break by the arrival of the unbroken wave. This energy has to be 
supplied in the case of the laboratory wave by the resistance to the flow of an 
obstacle of some form suitable to generate the desired wave shape. Although 
analytic techniques exist (see Lamb 1932) they are difficult in this three-dimen- 
sional case, and the process by which the shape of the obstacle is determined in 
the present experiment is quite empirical, the only guideline being the analogy 
between the oblique gravity wave in supercritical water flow and an oblique 
shock wave in supersonic gas flow. Accordingly, the material chosen for the 
obstacle is plasticine, so that its shape can be modified to change the resulting 
wave shape by trial and error. 

In  plane supersonic gas flow, a stationary oblique wave may be generated by 
deflecting the flow with a wedge. The character of the wave may be made to 
vary along its length, from an isentropic compression near the tip of the wedge 
to a shock wave further along, by making the wedge surface concave (see figure 
2). If an experiment like this is performed in a supersonic wind tunnel, it  is 
advisable to raise the wedge off the tunnel floor A to avoid separation of the 
tunnel-wall boundary layer. Similarly, the shock- wave incident on the tunnel 
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FIUURE 2. Isentropic compression wave steepening into a shock in supersonic gas flow. 
A ,  chmnel to avoid boundary-layer separation; B, shock-induced separation may cause 
choking of the flow. 
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FIUURE 3. Contour map of the obstacle. The numbers on the contours indicate vertical 
height in om. The numbered arrows show the location of the sections in figure 5. 
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roof B may cause the boundary layer to separate there and result in ‘choking’ 
of the entire flow. 

In  the present experiments the’procedure of simulating an ocean wave is 
necessarily approximate, because no acccurate measurements or adequate 
theories are available to describe the desirable wave. The criteria for judging 
whether or not the wave produced has the right characteristics are comparisons 
of the surface shape with photographs of ocean waves, and comparisons with 
experience gained in riding ocean waves. There is, of course, some leeway in 
these criteria because a considerable variety of wave shapes can be ridden. 

Some simple rules of behaviour emerge from experiments with a straight 
obstacle: reducing the angle of incidence of the obstacle reduces the wave angle 
y as well as S. At constant y ,  S is most easily controlled by varying the cross- 
sectional shape of the obstacle face. It is essential to terminate the obstacle about 
half way across the flume to prevent choking of the flow by the wave. In  fact 
even that leaves too small a gap, and the wave builds up into a normal hydraulic 
jump which moves to a stable position further upstream. To prevent this choking, 
the false floor mentioned in 5 2 is terminated immediately after the trailing end 
of the obstacle so that the water spills down over a step of about 30 em height. 

The final form of the obstacle is shown in figure 3 in the form of a contour map. 
It can be seen that only a slight curvature has been built into the contours on the 
obstacle face and that the tip builds up gradually in a backward sweep, leaving 
a space for the channel-wall boundary layer to be washed past outside the region 
of interest. The end of the false floor is also indicated in the figure. 

3.3. The model wave 

A photograph of the type of ocean wave we wished to reproduce in the flume is 
shown in figure 4(a) (plate 1); figure 4(b) (plate 1)  shows a similar view of the 
model wave produced when a stream at 2-24 m s-l and 7-8 om free-stream depth 
flows over the obstacle of figure 3. It can be seen that quite good surface similarity 
may be achieved, although one of the differences between the two waves is 
evident in the photographs. This is due to the relatively greater importance of 
surface tension in the model wave, which manifests itself in an apparently more 
rounded lip on the curl. The radius of curvature of the lip is, of course, approxi- 
mately the same in both waves, the sharper appearance of the ocean wave being 
due to its larger size. As can be seen by the nature of the broken part of the wave 
in figure 4 ( b )  the photograph is made by a short time exposure (0.0003 s). The 
apparent thickening of the curl just before it strikes the wave face is a transient 
effect, a broad splash of liquid leaving the curl in a downward and inward 
direction. The size of this splash is indicative of the magnitude of the fluctuations 
in the free stream, which amounts to approximately f 5 % of the free-stream 
depth. 

While the wave cannot be compared with the ocean wave in greater detail 
because of the lack of data on the latter, a thorough measurement of the labora- 
tory wave is possible and indeed necessary in order to make the experiments 
meaningful. 
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FIGURE 5. Side view of the wave, taken at the sections shown in figure 3 with 

section numbers marked. Heavy lines with arr owheads show surface streamlines. 

To do this, the mean position of the surface and the shape of surface stream- 
lines, made visible by injecting dye, are measured by a three-dimensional travers- 
ing device. The free-surface shape is shown in figure 5 in the form of 11 vertical 
sections through the wave, taken a t  the positions marked in figure 3. Also 
indicated in the diagram is the position and shape of the obstacle in the same 
sectional representation. The viewing direction is tangential to the downstream 
part of the contours on the obstacle face. Thus one sees the free-stream surface 
from underneath. The light lines in figure 6 represent the free surface, the 
numbers indicating the evenly spaced sections progressing in a downstream 
direction along the wave. The co-ordinate in this direction is expected to be 
analogous to time in the two-dimensional unsteady case of a wave normally 
incident on a sloping beach. This analogy is illustrated by figure 6 ,  in which 
section number 4 is still like a smooth wave, and a continuous progression leads 
through the sections to 11, in which the curl is about to strike the wave face. 

The temporal mean position of surface streamlines is also shown in figure 5 
in the form of heavier lines with arrowheads. Since the flow is steady, the free 
surface is a stream surface and streamlines are tangential to it everywhere. This 
is not true, of course, for submerged stream surfaces, which may, in special 
cases, meet the liquid surface at a finite angle. An example is a dividing stream 
surface, the intersection of which in the liquid surface is a dividing surface 
streamline. 

Such a dividing stream surface occurs in the oblique wave, and its concomitant 
dividing surface streamline is shown in figure 5.  The streamlines to the left and 
below the dividing stream surface pass over the obstacle smoothly, without 

30 P L M  78 
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FIGURE 6. Contour map of the water surface. The numbers indicate vertical height in cm. 
The contours on the roof of the tube are shown in the cut-out. The streamline shown is the 
dividing surface streamline. 

being involved in the broken part of the wave. The fluid on streamlines above 
and to the right of it on the other hand diverges strongly into the curl and passes 
into the violently turbulent and frothy break, from which it emerges and moves 
in a direction approximately parallel to the obstacle as in supersonic gas flow 
over a wedge. The free-stream fluctuations are actually helpful in detecting the 
dividing streamline, since, if the dye is injected in the right position, the slightly 
jagged streamline broadens dramatically into a divergent smear just as it reaches 
the crest of the wave. The dividing surface streamline is shown also in the contour 
map of the liquid surface (figure 6) in which the locus of the vertical tangent to 
the surface inside the tube is marked as a heavy dotted line and the lip of the curl 
is indicated by a heavy solid line. The light lines indicate contours, which are 
also shown underneath the curl in a small cut-out. The light dotted lines 
show the outline of the obstacle to locate the diagram relative to figures3 
and 6.  

The analogy between a compression wave in supersonic gas flow and a gravity 
wave in shallow water is emphasized by plotting the free surface in a contour 
map such as figure 6. This is because the height contours of the free surface are 
characteristic curves and correspond to the Mach waves of the gas-flow case. 
Thus, the coalescing of characteristics of the same family into a shock wave 
manifests itself in the water wave as a steepening to a vertical face. The analogy 
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FIGURE 7. Contour map of the dividing stream syface, whose trace in the 
liquid surface is the dividing surface streamline. 

fails just there, however, as the height contours may intersect in the region of 
the curl, while this would not be possible in a gas shock. It should be remembered, 
however, that the scale of the shock thickness is usually small in gasdynamic 
problems while the thickness of the hydraulic jump in the present problem is of 
the same order as the overall scale of the flow. The jump-shock analogy may 
therefore be expected to be more useful in a situation where the wave thickness 
is small compared with the overall scale of the problem. 

Figure 7 shows the contours of the dividing stream surface. These are obtained 
by varying the depth at which dye is injected in the free stream until the stream- 
line divides, measuring the shape of the streamline with a probe and repeating 
the process at several stations across the flume. Because of the broadening of 
the surface dividing streamline near its downstream end, the mean position of 
the dividing stream surface becomes more difficult t v  determine in the vicinity 
of the dividing surface streamline. Consequently the position of this part of the 
surface can only be measured repeatably to an accuracy of 1-5 em. Elsewhere 
(in figures 5, 6 and 7) the accuracy is limited by the fluctuations in the free 
stream to t. 0.3 cm. Measurements of a stream surface below the dividing stream 
surface and originating from 2 cm below the liquid surface in the free stream 
show that this surface is smooth despite the somewhat angular shape of the 
obstacle. 

The part of the wave below and just upstream of the lip of the curl (see figure 
6) is the region of the liquid surface of main interest to the surfboard rider, and 

30-2 
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the detail of the slopes of the surface is required for the following sections. The 
overall properties of the wave are collected here for clarity: 

free-stream speed = 2.24 m s-l, 

wave height h = 18 em, 

throw of curl 1 = 8 cm, 

wave angle y = 48" 

(measured between free-stream direction and 25 cm contour). 
Apart from the fact that the model wave is smaller than the ocean wave, so 

that surface-tension effects are more important, another difference between the 
two situations is that the relative velocity of the free stream and the floor is not 
zero in the model situation. This means that there is a boundary layer on the 
floor which may be sufficiently thick to affect the flow near the liquid surface 
and so to influence the flow around the fin of a surfboard. A boundary-layer 
traverse, made in the free stream at a station just upstream of the wave (2.5 m 
from the weir), shows that the 95 yo thickness of the (turbulent) boundary layer 
is less than 3.5 cm, thus occupying less than the lower half of the flow. 

4. The surfboard riding on the wave 
4.1. The modelling problem 

When a surfboard rides a wave in steady flow the force P exerted on it by the 
water may be expected to depend on the water density p, viscosity p, surface 
tension c, speed V relative to the board, the acceleration of gravity g ,  a length 
d characterizing the board size, the wave height h and the shapes of the wave 
and board. This relationship may be expressed in dimensionless form: 

P 

or 
C, = f (F ,  R, W ,  dlh, 8, y, board shape), (3) 

where f defines the relationship (unknown until the problem is solved) between 
the force coefficient C,, the Froude, Reynolds and Weber numbers F ,  R, W ,  the 
parameters 8 and y and the board size and shape. 

I n  a similar way, the wave-shape parameters y and S are related to the 
obstacle shape, and to the Froude, Reynolds and Weber numbers, with h 
replacing d in F and W ,  and a length which characterizes the boundary-layer 
development on the flume floor replacing d in  R. However, as has been pointed 
out in $3, the boundary layer on the flume floor is thin enough in the present 
experiments for the Reynolds number to be unimportant in the case of the wave. 
The Weber number essentially affects only the sharpness of the lip, provided that 
h is much larger than 1 ern (on a scale of between 1 and 2 em, gravity and surface- 
tension effects in water are equally important). Hence the wave modelling, 
keeping the Froude number constant, is not fraught unduly with scale effects 
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due to the difference between model and prototype Reynolds and Weber numbers 
in the present experiments. (No attempt was made to lower the surface tension 
of the water by using additives.) 

The same may not be true of the surfboard modelling. The quantities vw/(hg)4, 
y and S are the same for the model and prototype waves. Hence, if d/h as well as 
the liquid properties are the same for model and prototype, R and W are neces- 
sarily changed by the scaling. This is likely to be quite important in the present 
experiments because, for the model, R is in the laminar or transition region 
while the boundary layer on the prototype board is certainly turbulent. Since 
the model board is closer in size to the 1 cm scale of surface tension, the Weber 
number is relatively more important, both in the capillary waves and in regions 
of large surface curvature under the board. The modelling of surfboards riding 
a wave of approximately 20cm height can therefore only be expected to be 
quantitatively successful if the forces due to surface tension and viscosity are 
unimportant compared with the total force on the board. However, by analogy 
with the results of subsonic wing theory, it may be expected that the scale effects 
significantly influence only the drag and not the lift force on the board. 

4.2. Main results of previous work 
In  a classic treatment of the inviscid planing problem at infinite Froude number 
and zero Weber number, Wagner (1932) obtained solutions to a number of steady 
and unsteady planing problems, by showing first the correspondence between 
such flows and the flow on the pressure side of equivalent fully submerged wings. 
To the Kutta condition in the latter there corresponds, in the former, the require- 
ment that the free surface has to leave the trailing edge of the planing board 
in the direction of the bottom surface of the board. The flow above the stagnation 
streamline is different in the two cases, the forward moving flow becoming a 
drag-producing splash in the direction of the planing board in the one case, 
while it flows over onto the suction side in the case of the wing, producing a 
drag-reducing low pressure on the leading edge. 

As will be shown below, one of the cases treated by Wagner is particularly 
relevant to the surfboard flow. This is the unsteady, centrally similar problem 
of a two-dimensional semi-infinite flat plate entering the liquid surface obliquely, 
trailing edge first, while the plate is at incidence. The trailing edge is always 
parallel to the water surface, and all other angles to the horizontal are assumed 
small. Figure 8 shows the configuration and the deformed water surface. The 
similarity centre is the point where the trailing edge of the plate first strikes 
the liquid surface. The discontinuity of the tangential velocity at the liquid 
surface in the wake amounts to a vortex sheet, which rotates the free surface, 
raising it at the similarity centre and lowering it near the trailing edge. The flow 
is similar to that of an impulsively started wing, which leaves a starting vortex 
behind. Figure 8 also shows the splash formed at the leading edge of the wetted 
surface. The mid-point of the wetted surface, xo from the similarity centre, is 
of course not necessarily on the undisturbed waterline. To find its path and to 
determine the angle ~3 it is necessary to find the shape of the deformed free surface 
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Splash 

FIGURE 8. Wagner’s unsteady centrally similar two-dimensional planing 
problem with schematic pressure distribution. 

of the water. Wagner obtained a solution for this shape as well as the velocity 
field, and determined the force of the water on the board as 

*7rcpuu, [ 1 + X,/C]2 [ 1 - (X0/c)-2] 
(x,/c - 1) (X,/C - c/x, + 2 log X,/C)’ P =  (4) 

where X, = x, + (xi - 1)i  and the other symbols are defined in figure 8, in which 
t denotes time. 

In  the range 1.5 < xo/c < 5, (4) may be approximated by 

(5) 

to  within an error of not more than 1.5 yo. Because it is a convenient place to 
show it, the pressure distribution on the board is sketched qualitatively in figure 
8, in order to point out that at small incidence the splash is very thin and there- 
fore the stagnation point is dose to the leading edge of the wetted area. It also 
shows that the flow under the board is everywhere in a favourable pressure 
gradient, so that the boundary layer may be expected to be very thin. 

While Wagner’s assumption that the board incidence is small usually holds 
in the case of surfboard flows, the assumption that F-t  03 needs to be examined. 
The effect of gravity on two-dimensional planing flows is shown well in Sedov’s 
(1965) summary of his own and other work in the Russian literature (notably 
by Gurevich and Chaplygin). As an example of the results of this work, figure 9 
shows the force coefficient divided by the incidence, the location of the centre 
of pressure and the fractional contribution of the wave and splash drag plotted 
against P for steady planing of a flat plate a t  small incidence. All these quantities 
asymptotically approach constants as P+m. Above P = 2.5 (P being based on 
the wetted length 2c) C,/p changes only by 15% of its asymptotic value, the 
location of the centre of pressure does not change, and the wave drag represents 
less than 25 yo of the splash drag. This wave drag is, of course, that due to gravity 
waves, the Weber number having been considered zero. The ratio of wave drag 
to splash drag is independent of p. 

A very detailed experimental investigation of boards planing under asym- 
metric conditions at P 2: 10 on a flat horizontal water surface was made by 

U P = ~ T C P U ,  - (0.4 + 1.53 X,/c) 
x,/c - 1 
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FIGURE 9. Effect of Froude number (from Sedov 1965). 0, = splash drag, 0, = wave drag, 
r = distance of the centre of pressure from the trailing edge. 

Savitsky, Prowse & Lueders (1968), who measured forces and moments with a 
balance. Their results essentially confirm Wagner’s (1932) predictions where these 
are appropriate. They also demonstrate that scale effects are not detectable by 
comparing their results, taken with a 2 in. beam model, with those of Weinstein 
& Kapryan (1  953), which were obtained with a 4in. beam model. 

An experimental investigation in which surfboards were tested on a stationary 
wave (with normal orientation to the flow) was made by Paine (1974). Of parti- 
cular interest in this project were stepped-bottom boards and boards with 
discontinuous rocker curve slope. 

4.3. A straight-sided plane surfboard riding on a piane wave fme 
Consider the problem of figure 8 and its solution by Wagner (1932) for inviscid 
flow and B+m, W+O. This problem is plane and essentially unsteady, i.e. it 
may not be made steady by any Galilean transformation. However, if the pIate 
is inclined slightly, so that the trailing edge makes a small angle with the water 
surface, an analogous three-dimensional problem is generated, which is no longer 
essentially unsteady, because an observer moving with the velocity of the point 
where the trailing edge intersects the water surface sees i t  as steady. This change 
from an essentially unsteady n-dimensional problem to an analogous steady 
(n + 1)-dimensional one has been a successful trick in various fields in fluid 
mechanics. I n  fact the same technique has been used in 3 3 to relate the steady 
three-dimensional breaking wave to a two-dimensional unsteady plunging 
breaker. The time in the flow of figure 8 is replaced in the analogous three- 
dimensional steady problem by the distance along the trailing edge. A sketch 
of the three-dimensional steady flow is shown in figure 10. The fact that the flow 
in figure 8 is centrally similar makes the flow field in figure 10 conical, all pro- 
perties of the flow being constant along rays through the similarity centre for 
the case of a semi-infinite board. Note that the analogy takes account of the 
induced velocity field due to the trailing vortex system on the starboard side of 
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FIGURE 10. Relating Wagner’s problem (figure 8) to the 
plane surfboard on a plane wave face. 

the board in figure 10, which corresponds to the vortex sheet of the two- 
dimensional unsteady case. 

When F + co, gravity becomes unimportant and there is no preferred orienta- 
tion of the undisturbed water surface. The water surface in figure 10 may there- 
fore be thought of as sloping to the horizontal at a finite angle by rotating the 
figure through this angle. To indicate this, figure 10 is drawnwith the water surface 
obliquely across the page. Viewed in this frame, the undisturbed water surface 
resembles a wave face, being inclined to the horizontal, with the water moving 
uphill. The attitude of the board and the flow around it are qualitatively similar 
to the surfboard situation, as can be seen by comparing them with the photo- 
graph in figure 11 (plate 2), although the surfing situation is more complicated 
for a number of reasons. These are that P and W are finite, the undisturbed 
water surface is curved, the board edge and bottom surface are curved, and the 
leading edge of the wetted surface usually emerges on the leading side of the 
board rather than at the tail. An interesting effect due to a combination of finite 
F and water-surface curvature is the gradual overturning of the water ridge 
evident in figure 11 (plate 2). 

The flow in figure 10 is defined by the three angles a, 8 and /3. The velocities 
U and U, in the corresponding two-dimensional unsteady problem (see figure 8) 
are 

u = ve, u, = va. (6) 

In  order to calculate the load per unit length from ( 5 )  it  is necessary to determine 
zo/c by finding the shape of the deformed surface in order to locate the leading 
edge of the wetted area. Alternatively, if the angle E is known, ( 5 )  may be expressed 
in the form 

P = &CP V2ae (1.93 + 3*068/~). (7) 
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This may be regarded as the lift per unit length of the board, and the total lift of a 

board of wetted length d may be determined from L = P d(  Vt) .  Since c = ieVt, 

this gives 
(8) 

It should be pointed out that in the derivation of (8) the facts that the board is 
bite and that the variation of lift along its length affects the applicability of 
Wagner's two-dimensional result have been neglected. However, (8) can be 
tested in the experimental results of Savitsky et al. (1958). The cases selected 
for this purpose are those with a triangular wetted area and cover the range 
10' < 8 < 20°, 36" < e < 55" at a = 6" and P w 12. The comparison shows that 
(8) (with sin e replacing e) agrees with Savitsky's results within f 15 %. 

L is the component normal to the undisturbed water surface of the total force 
exerted by the water on the board. The component parallel to the undisturbed 
water surface is not necessarily parallel to the undisturbed streamline in this 
three-dimensional flow (see figure 17). 

Since the centre of pressure for each element of the board lies at  0 .44~  from 
the leading edge of the wetted area (see figure 9) the centre of pressure for the 
total board may be expected to lie approximately at a point 3d from the similarity 
centre on the line x = x,, + 0 . 5 6 ~ .  

1: 
L = $pV2$ed2&nea (1.93 + 3.068/e). 

4.4 The model surfboards and their performance 

It is part of the experience of every experimenter that the multitude of small 
effects neglected in the process of arriving at the theoretical prediction of a 
phenomenon usually cause its experimental verification to be a lengthy process 
during which stray effects have to be eliminated carefully in order to achieve 
the right balance of conditions. It may be imagined, therefore, how pleased and 
excited we were when the first model board was able to ride the model wave 
unsupported. The board was made 18 cm long of balsa wood and weighted with 
plasticine according to the scaling law Pcc dS to make up the correct total 
weight to represent 70 kg of board and rider at 1/12 scale. It was able to ride the 
wave despite the scale effects (Rand W )  and despite the inability of the plasticine 
weight to correct for the effect of the fluctuations of the water surface. One of the 
benefits of this result is that it obviates the necessity for building a force balance. 
This would be a very difficult task in any case, because the board would have 
to be held by the balance in just the right position and attitude to match the 
water surface. Because of the fluctuations in the water surface the problem 
would be even more difficult. As it  is, the forces normal and parallel to the water 
surface may be measured simply by recording the slope of the water surface and 
resolving the total weight in the appropriate directions. A photograph of the 
board on the wave is shown in figure 12 (plate 2). This photograph again shows 
the rolling over of the water ridge downstream of the board. It also shows the 
nylon fishing line (101b strength) attached to the bow of the model for safety. 
This is quite flexible and transmits only an extremely small force to the model. 
It appears particularly thick in the light of the flash in this photograph. 
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In  order to test the effect of some simple board-shape parameters, while also 
being able to measure the position of the leading edge of the wetted area, nine 
model surfboards were made of Perspex with three different bottom shapes and 
three different planforms. The three photographs of figure 13 (a )  (plate 3) show 
the planforms and the bottom shapes. The latter are made clear by projecting 
a Ronchi grating onto the boards at an oblique angle from a distance large 
compared with the board length, so that the fringes on the boards (which were 
temporarily painted white for this purpose) represent contours. The convex 
'vee', flat and concave bottom shapes are shown with the 'vee' tail, narrow 
roundtail and pintail planforms. Figure 13 ( b )  (plate 3) shows one of the boards 
from the side indicating the centre-line curve, or rocker, and the fin shape and 
position. These parameters were made as nearly as possible the same among the 
nine boards. Figure 13(b) gives an indication of the height difference between 
the contours of figure 13 (a).  The Perspex boards were made as light as possible, 
by shaping only the bottom surface correctly, the top being made flat, in order 
to reduce the ratio of board mass to rider mass, which is much larger in the model 
case (20.2g: 20.2g) than in the prototype case (4kg: 66 kg). Consequently the 
scaled pitch and yaw moments of inertia are much larger and the centre of mass is 
lower in the model system. It also means that only steady-state surfing and 
translationally accelerating situations can be modelled. 

To show that the experimental flow underneath the board does resemble the 
flat, straight-sided board situation a t  high P, figure 14 (plate 4) shows a trans- 
parent board viewed from above. On the starboard side of the board the water 
ridge can be seen to be preceded by some capillary waves and the leading edge 
of the wetted area is quite clearly discernible through the board. Where this 
edge emerges from under the board on the port side, the splash can be seen as a 
fold in the water surface. Behind this point the flow is, of course, no longer like 
that in figure 10. By making some approximate measurements of the quantities 
in (8) from this and a side-on photograph, it is possible to estimate the lift force. 
With 0 = 5", E: = 18", d = 13cm (to make *ed2 equal to the total wetted area), 
and a = 5", (8) gives L = 47 000 dyne for the case of figure 14. This is to be com- 
pared with the measured value of 37 000 dyne. In  view of the inaccuracies in the 
procedure for eatimating L and of the differences between the model surfboard 
flow and the idealization of figure 10, this discrepancy is remarkably small. The 
fact that the estimate is within a factor of 2 of the measurement supports the 
view that figure 10 gives the right qualitative description of the front part of 
the steady surfboard flow. 

The position of the centre of mass of the surfboard plus load is marked as a 
cross in figure 14. This lies further to starboard than one would expect from the 
prediction of the centre-of-pressure position (see 34.3). The reason for this is 
the lift force on the fin, which acts transversely across the board to starboard at 
a point below the board, thus tending to tip the board over towards port. The 
board lift and weight forces have to form a couple to counteract this torque. 
The function of the fin is to prevent excessive side-slip, that is to maintain the 
angle 8 small. Without it, the board's most stable attitude would be close to 
broadside on. The effective incidence of the fin is very difficult to determine 
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*surface. streamline 

h I 
t I 

FIGURE 15. The pressure under (a) sharp-edged and (b)  round-edged boards as qualitatively 
obtained from applying the continuity and Bernoulli equation to the guessed streamtube 
area, giving a lower pressure for (b ) .  

because of the three-dimensional nature of the flow under the board. Under some 
circumstances the fin may keep the board so close to the undisturbed streamline 
direction that 0 is negative. The model of figure 10 would then become invalid. 

A very important part of the surfboard shape is the sharpness of those parts 
of the board edge at which the flow leaves the board (see also Paine 1974). The 
reason for this may be illustrated by considering a rounded and sharp trailing 
edge of a two-dimensional planing board in the light of the Bernoulli equation. 
Figure 15 presents these two situations showing a surface streamline and the 
qualitative behaviour of the pressure, velocity and height along it. The area 
change along the stream tube demands a velocity change, which together with 
the height change determines the pressure change. This shows that the pressure 
under the board in figure 15 (a )  is lower than that in figure 15 (b), with a resulting 
decrease in lift. The suction under the tail of the board associated with a rounded 
edge (or with excessive rocker) enables surfboard riders with long, heavy boards 
to perform the trick of ‘hanging ten’, that is, standing a t  the front of the board 
(in front of the wetted area) with all toes protruding over the edge. 

4.5. Estimates of the drag and scale effects 
Since a is not zero, the total force due to the pressure on the board bottom has a 
drag component. The splash drag may be estimated from Wagner’s theory. Both 
of these drag components may be expected to be the same for the model and 
prototype situation provided that the board attitude is the same in both cases. 
Whether it will be or not depends, however, on the skin-friction and wave-making 
contributions to the drag. 

To estimate the skin-friction contribution it is convenient to approximate 
the boundary-layer flow on the board by a two-dimensional model with a linearly 
decreasing pressure (see figure 8). The Falkner-Skan solutions apply to this 
idealization of the flow if the boundary layer is laminar, giving an average skin- 
friction coefficient of 

C, = 1-37 (v/Vd)*, (9) 

where v = p/p. To estimate the transition-point position, the minimum critical 
Reynolds number for instability is used, in accordance with the results of 
Granville (see Schlichting 1965, figure 16.21), the free-stream turbulence level 
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105 1 06 10’ 

Vdlv 

FIUURE 16. The average skin-friction coefficient on a plate with linearly 
decreasing pressure. - --, zero pressure gradient. 

1 O8 

Lift coefficient 
Pressure drag coefficient 
Splash drag coefficient 
Gravity-wave d.c. 
Capillary-wave d.c. 
Skin-friction d.c. (board) 
Skin-friction d.c. (fin) 
Total estimated drag coefficient 
Displacement thickness (om) 

TABLE 1 

Model 
0.06 

0.0063 
0.0017 
0.0004 
0.0004 
0.0026 
0.0007 
0.0121 
0.02 

Prototype 
0.06 

0.0063 
0.0017 
0.0004 
0 
0.0023 
0.0002 
0-0109 
0- 1 

being very high. For the linear pressure distribution (corresponding to a Pohl- 
hausen parameter of 5.5) Schlichting’s figure 17.3 gives the minimum critical 
Reynolds number (here converted to distance along the plate s) of Vs/v = 108. 
Adopting this as the transition Reynolds number, it  is clear that the boundary 
layer on the model boards (?‘d/v = 2.7 x lo6) is laminar. The dispIacement 
thickness of the boundary layer is approximately 0.02 cm at the end of the plate. 

For the prototype board, Vd/v = 1.1 x 10’. Most of the boundary layer is 
therefore turbulent, and can be estimated by the method outlined by Schlichting 
(1965, 0 XXII.3).  This method yields the turbulent skin-friction curve shown in 
figure 16, in which the flat-plate skin-friction curve is included for comparison. 
Also shown is the laminar skin-friction curve as given by (10). The boundary- 
layer displacement thickness at the end of the plate is 0.1 cm according to this 
estimate. The model and prototype points shown on figure 16 indicate that the 
average skin-friction coefficients for model and prototype may be expected to be 
nearly the same. The fact that the boundary layer is not turbulent in the model 
flow, while modifying the very small dimensionless boundary-layer thickness, 
actually helps the modelling, by maintaining the drag coefficient more nearly 
equal to the prototype value. 

The gravity-wave-making contribution to the drag may be estimated from 
figure 9 as being 25 yo of the splash drag at the operating Froude number of 2.5. 
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FIUURE 17. The forces exerted by the water on the board balance the weight. Q, T and Dare 
in the plane of the water surface, L is perpendicular t o  it. Q is directed at right angles t o  
the surface contour and D is parallel to V .  

By estimating the capillary wave height a t  0.05 cm and assuming that the in- 
creased pressure associated with it acts over an area equal to the wave height 
times the board width, a capillary-wave-making drag coefficient of 4 x l o 4  is 
obtained. Adding up the various contributions for model and prototype gives the 
results in table 1 for the case of figure 14. All force coefficients are based on the 
wetted area of the board A .  The direction of the component of force in the plane 
of the water surface Q is the direction of the steepest gradient of the water surface 
(see figure 17). It is made up of the fin lift plus transverse force due to the asym- 
metry of the planing condition T and the fin drag plus board drag D. The total 
water-plane force coefficient Q/*p V2A turns out to be 0.020 for the case of figure 
14, the water surface gradient being 18' at the operating point. Only the drag 
component of this force is likely to be sensitive to R and W and table 1 shows that 
these scale effects only amount to about 10 yo of D/#p V2A. By measuring the 
angle between V and Q ,  the separate components T and D may be determined 
in the experiment. For the case of figure 14, this angle is 42'. Hence T/*pV2A 
is measured at 0.015 and D/ijpV2A as 0.0134, indicating that the drag estimate 
of table 1 (in which most three-dimensional effects are neglected) is 11 % low. 

4.6. Summary of force measurements and longitudinal stability 
The results for the stationary planing of the nine boards are given in table 2. 
The columns called nose lift and tail lift describe the rocker curve, being 
measured from the tangent to the centre-line of the bottom at the widest beam 
point. Unfortunately the nose and tail lifts did not remain constant on the 
Perspex boards owing to stress relaxation, and they could not be made the same 
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sufficiently accurately. It is therefore difficult, particularly for the vee-tails, to 
draw any significant conclusions from the variations in lift, side force and drag 
coefficients with board shape. However, the concave boards are able to ride the 
wave stably a t  a higher point on the wave and, like the vee-bottom boards, are 
able to surf with less side-slip. They appear to give more lift. The last row in 
table 2 gives an indication of the estimated error in the tabulated quantities. 

The effect of moving the centre of mass is to cause the board to accelerate 
approximately in the direction of the centre-of-mass shift. Thus a shift of the 
centre of mass a little to the wave-face side of forward causes the board to 
accelerate forward along the surface contour. The board acceleration is much 
more sensitive to transverse shifts than to longitudinal shifts. However, when the 
centre of mass is shifted a little back of the transverse direction towards the 
wave face, i t  climbs up the wave face and, because of the resulting reduction in 
lift, finds a new stable position. It is extremely difficult in the present experi- 
ments to explore the higher stable positions of the boards because the water 
surface choppiness causes the boards to be thrown off balance. 

The longitudinal stability of the boards is determined by measuring the 
acceleration a resulting from a given longitudinal displacement p of the centre of 
mass. This is done by holding the board at its steady operating point, releasing 
it and timing its progress along the wave contour over a fixed distance of about 
one board length. The acceleration a is determined by assuming it to be constant 
over this distance. The stability in the form of a force per distance of centre- 
of-mass shift may be determined from these results. It turns out to be 2700 
dynelcm with a scatter of about & 50 o/o among the nine boards. I n  dimensionless 
form, this may be expressed as adfgq M 0-75 with forward and backward 
acceleration. 

5. Conclusions 
The aims of this work, to generate a stationary, oblique breaking wave in the 

laboratory and to demonstrate that surfboards can be tested on such a wave, have 
been achieved. The first part of the work has shown that the wave provides a 
convenient means of studying two-dimensional breaking waves inasmuch as the 
three-dimensional steady oblique wave is analogous to the two-dimensional 
unsteady normal breaker. One of the features of such a wave, the dividing 
stream surface, is discussed in $3.  Such a surface would be very difficult to 
recognize in two-dimensional unsteady experiments beoause it would appear as 
a set of moving path lines. Apart from the effect of surface tension to round off 
all sharp edges on the wave, no significant scale effects are involved in modelling 
the wave, and Froude-number similarity is automatically satisfied. 

Model surfboards can be tested with quantitative success on such a wave. 
They are able to ride it unsupported, so that all forces may be determined by 
resolving the weight in the appropriate directions. For the model tests to be 
more accurate than here, it would be necessary to produce a wave with less 
surface choppiness and to make the surfboards with more precision. The smaller 
fluctuations of the board would then make more accurate determinations of the 
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board attitude possible (e.g. using a light beam reflected from a mirror mounted 
on the board). The surfboard modelIing is likely to suffer from significant scale 
effects only in the drag component of the force exerted by the water, where they 
are estimated to contribute about 10 yo. Since the relative mass of the board is 
much larger in the model situation, dynamic stability measurements are not 
possible with the present method of model construction. However, measure- 
ments involving linear accelerations are valid, and one such measurement (of 
longitudinal stability) is described in $4.6. In  the present experiments only a 
fixed-total-weight situation is examined. A method of changing the operating 
point of a given board on a particular wave would be to vary the total weight. 
The additional parameters introduced into the problem by changing the weight 
would require much more extensive experiments, but this appears to be an 
interesting direction in which to extend them. 

To test the slight evidence that a concave board has more lift than one with 
a flat or convex vee bottom, one of us (P.K.) has built a full-size board whose 
main feature is a transition from a convex vee bottom at the front (for sea- 
keeping ability) to concave at  the tail (for steady-state high lift). I ts  edge has a 
transition from a bevelled chine at  the bow to a round edge at  the maximum 
beam point to a sharp edge towards the tail. To date, only subjective information 
is available on this board: those who have ridden it speak very highly of its 
manoeuvrability and speed. 

A stationary breaking wave may, of course, also be produced at  full scale, 
for example by placing a suitable obstacle in a fast-flowing river. Such a wave 
might be used for surfing for pleasure, for teaching people to ride boards or for 
detailed board-shape investigations. The fact that it could be ridden for hours 
on end, rather than only for about 30 seconds as is typical of ocean breakers, 
would be very attractive to the dedicated surfer. 

We should like to thank Dr Keith Crook of the Department of Geology, 
ANU, for making the flume available for the experiments, and Mi- K. C. Smith 
for his excellent efforts in the extensive photographic work involved in the 
project. The photographs of figures 4(a)  and 11 were kindly made available by 
Surfing World. Figure 12 is reproduced from G photograph taken by Dr S. M. A. 
Meggitt. 
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FIGURE 4. (a) Desirable wave shape showing a surfer in a somewhat 
bumpy ride. ( b )  Model wave produced in the flume. 
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FIGURE 11. Showing the wake of a surfboard. Note the overturning of the 
water ridge due to gravity and surface curvature. 

FIGURE 12. Balsa-wood surfboard model weighted with plasticine, riding the model wave. 
The force transmitted to the board through the nylon fishing line is negligible compared 
with the water forces. Note again the overturning of the water ridge behind the board. 
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0 10 cm 
FIGURE 13. (a)  Planforms and bottom shapes of the surfboard models. Top: convox vee- 
bottom, vee-tail; middle: flat bottom, narrow round tail; bottom: concave bottom, pin tail. 
The bottom shapes are made visible by projecting a Ronchi grating obliquely onto the 
boards, thus producing fringes which represent contours of height. ( b )  Side view of surfboard 
model showing rocker curve and fin. 
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FIGURE 14. Top view of transparent surfboard model riding the wave. The cross marks 
the centre-of-mass position. Note the lending edge of the wetted area and the starboard 
side capillary waves. 
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